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Abstract

We examine optimal linear taxes on normal and excess capital income with het-

erogeneous rates of return, alongside an optimal nonlinear earnings tax. Households

optimize a portfolio containing three types of assets: risk-free, diversifiable risky, and

private investment with idiosyncratic risk and heterogeneous expected returns. We de-

fine normal capital income as the risk-free rate times the size of the portfolio, and excess

returns as any deviations from it. In this setting, taxing excess returns is ineffective

for redistribution due to a Domar-Musgrave effect and only generates revenue, to be

balanced against the cost of revenue uncertainty. Taxing normal returns does serve

redistribution, as they reveal information about the investors’ types beyond what the

earnings tax base reveals.

Keywords: optimal capital taxation, risk, taxation of excess returns

JEL Classification: H21, H23, H24

∗Boadway: Department of Economics, Queen’s University, K7L 3N6 Kingston, Ontario, Canada, e-mail:
boadwayr@econ.queensu.ca. Spiritus: Department of Economics, Erasmus University Rotterdam, Burge-
meester Oudlaan 50, 3062 PA Rotterdam, The Netherlands, e-mail: spiritus@ese.eur.nl. We are grateful
to Vidar Christiansen, André Decoster, Bas Jacobs, Laurence Jacquet, Jukka Pirttilä, Dirk Schindler, Erik
Schokkaert, Jo Van Biesebroeck, Bart Capéau, Annelies Casteleyn, Aart Gerritsen, Louis Kaplow, Etienne
Lehmann and Erwin Ooghe for helpful comments and discussions, as well as participants to numerous sem-
inars and conferences. We are grateful to the editor and two anonymous referees for their insightful and
constructive remarks. Spiritus acknowledges the financial support of the Belgian Federal Science Policy Of-
fice (BELSPO) via the BRAIN.be project BR/121/A5/CRESUS, and of the Flemish Research Foundation
(FWO) via travel grant V464515N. Declarations of interest: none.

1



1 Introduction
The current consensus among public economists is that capital income should be taxed

at positive rates, despite suggestions in the earlier literature to the contrary.1 This view has

been strengthened by the observation that rates of return to capital differ among households.2

Heterogeneous rates of return lead to above-normal—or excess—returns, which may reflect

rents, luck or differences in investment ability. The taxation of rents serves both efficiency

and redistributive objectives, and this has led some observers to recommend differential tax

treatment of excess versus normal capital returns.

The Mirrlees Review (2011) proposed a Rate-of-Return Allowance (RRA) for the UK

that would fully exempt risk-free returns from personal income taxation, while taxing excess

returns at the same marginal rate as labour income. A recent report by the Institute for Fis-

cal Studies reinforces this reasoning, applying it to the taxation of business owner-managers

(Adam and Miller, 2021). Similarly, Cnossen and Jacobs (2022) have advocated the differ-

ential taxation of excess capital income for the Netherlands. In the corporate tax literature,

the differential taxation of rents versus normal capital income has long been proposed, no-

tably with the recommendation for an Allowance for Corporate Equity, which is equivalent

to a tax on rents and risk (Gammie, 1991; Mirrlees Review, 2011). Recent proposals for

cash-flow taxation accomplish the same result (e.g., President’s Advisory Panel on Federal

Tax Reform, 2005; Australian Treasury, 2010; Auerbach et al., 2017; Devereux et al., 2019).

Some Scandinavian countries already tax excess returns at a higher rate than normal

returns. Norway, Finland and Sweden do so for non-incorporated businesses. Moreover,

Norway uses a Rate-of-Return Allowance for corporations, whereas Finland and Sweden tax

dividends above a basic exemption (see Cnossen and Sørensen, 2022). More generally, many
1The arguments are reviewed by, for example, Banks and Diamond (2010), Jacobs (2013), Bastani and

Waldenström (2020) and Scheuer and Slemrod (2021).
2See, for example, Bach et al. (2020) and Fagereng et al. (2020) for empirical evidence on heterogeneous

rates of return. Gahvari and Micheletto (2016), Kristjánsson (2016), Gerritsen et al. (2020) and Guvenen
et al. (2023), among others, show how rate of return heterogeneity leads to positive optimal taxes on capital
income.
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countries shelter normal capital income from retirement savings using the so-called registered-

asset treatment proposed by the Meade Report (Institute for Fiscal Studies, 1978). This

entails savings in registered accounts being deductible from taxable income, while subsequent

future withdrawals of principal plus accumulated capital income are taxable. As Adam and

Miller (2021) note, the implication is that normal capital income is sheltered from tax while

excess capital income is fully taxed as income. The rationale for taxing rents differentially is

that this represents a source of tax revenue that is both efficient and equitable. Taxing normal

returns, on the other hand, would impose efficiency losses, without offering distributional

benefits.

In this paper, we revisit the case for taxing excess returns and normal returns to capital

at different rates in a context in which excess returns are risky and the government im-

poses an optimal nonlinear tax on labour income. We study a setting in which taxpayers

choose how much they work and save, and optimize a portfolio of risk-free and risky assets.

Here, normal returns are defined as the risk-free rate of return multiplied by the size of

the portfolio, while excess returns are any deviations from these normal returns. Contrary

to expectations, we find that linear taxation of excess returns neither reduces the expected

after-tax excess returns nor the expected utility derived by investors, thus failing to redis-

tribute the rents contained in the excess returns. The intuition follows from a generalization

of the famous Domar and Musgrave (1944) result noted by Kaplow (1994) and Schindler

(2008): a linear tax on excess returns with perfect loss offsets reduces the after-tax risk for

investors, prompting them to increase their investments in risky assets. This increase in risky

investment completely undoes the effect of the tax on after-tax income, leaving the expected

utilities of the individuals unchanged.3 Consequently, in the context of our model, the gov-
3Mossin (1968) and Stiglitz (1969) derived the Domar and Musgrave result in an expected utility frame-

work for a representative agent allocating a fixed amount of wealth among risky and risk-free assets, where
the risk-free asset has a zero-rate of return. In response to an increase in the capital income tax rate, the
agent increases the demand for risky assets such that expected utility is kept constant. Kaplow (1994) and
Schindler (2008) show that this effect applies when the return to the risk-free asset is positive as long as the
capital income tax only applies to excess returns. We show that it continues to apply when the agents choose
their labour supply and their amount of saving, and they compose a portfolio with multiple risky assets.
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ernment is unable to use a linear tax on excess returns to redistribute between individuals

with different expected rates of return.

At the same time, a positive tax on excess returns generates positive tax revenues from

the increased risky investment it stimulates, including any additional rents contained therein.

A drawback is that the additional tax revenues are risky. In the optimum, the government

balances the benefit of additional tax revenues on excess returns against the increased un-

certainty in the provision of public goods.

On the other hand, a tax on normal returns can contribute to redistributive objectives

for two reasons. For one, the normal returns include information about the investment pro-

ductivities of the individuals that is not already revealed by the labour income tax base. For

another, if investment productivities are correlated with labour productivities, the normal

returns also include information about the latter. Therefore, the tax on normal returns en-

hances the efficiency of redistribution. The government balances the distortions caused by

a tax on normal returns against its distributional benefits.

Our Model We adopt an optimal income tax approach to study the optimal taxation

of risk-free normal returns and risky excess returns to capital alongside an optimal nonlinear

labour income tax. We assume the government can observe normal and excess returns to

capital, but it cannot observe separate components of excess returns. That is, it is practically

impossible to tax rents, which may be desirable on efficiency grounds, without at the same

time taxing returns to risk. To explore this issue, we allow for three types of assets: a risk-free

asset yielding a normal rate of return which we assume is fixed, risky market assets that yield

a competitive return and incur aggregate risk, and risky investments that yield idiosyncratic

returns and possibly rents. We assume the latter assets are personal investments whose

expected returns are linear and vary exogenously among individuals. Unlike market assets,

personal investments cannot be insured in the capital market.

Individuals then differ in two unobservable dimensions, labour skills as in the standard

optimal income tax literature and investment productivities. In our setting with imperfect
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information, a nonlinear income tax is imposed on labour income, and separate linear taxes

are applied to the risk-free component of all assets and to the excess return on the risky

assets. We assume that individuals invest strictly positive amounts in risk-free and risky

assets.

Government revenues are stochastic because of the aggregate risk of market assets, and

we follow Christiansen (1993) and Schindler (2008) in assuming that the government returns

that risk to the taxpayers using a stochastic public good. Since the latter imposes a cost of

risk on households, there is a social cost associated with taxing the excess returns, so the

government is unwilling to fully tax them away. Different modelling assumptions could be

used to prevent full insurance of the risky capital incomes, e.g., including decreasing returns

to scale or incentive effects of taxing excess returns, in which case a tax on excess returns

would yield additional distortions. Our setup however allows us to most cleanly illustrate

the main mechanisms at work, because it allows us to apply standard portfolio theory.

We work in a two-period life-cycle setting. Individuals supply labour in the first period,

and they save part of their labour incomes into their portfolio to finance consumption over

the two periods. We adopt assumptions that would lead to zero taxation of capital income

in a risk-free setting with no excess returns (Atkinson and Stiglitz, 1976).

Main Results We first show that an analogue of the Domar-Musgrave (1944) result

applies despite the inclusion of variable labour supply and saving, heterogeneous rates of

return and different rates of tax on normal and excess returns. Individuals alter their portfolio

compositions in response to an increase in the tax on excess returns such that their excess

capital income moves in inverse proportion with the net of tax rate. The tax on excess

returns does not affect the taxpayers’ labour supplies or their consumption in either period,

so it does not affect their expected utilities. Therefore, the optimal tax on excess returns

does not depend on the welfare weights of the individuals so does not fulfill a redistributive

objective. However, although a tax on excess returns does not affect individual utilities, it

does lead to an increase in expected revenues of the government by encouraging an increase
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in risky investments. The optimal tax rate on excess capital income balances the increase in

expected tax revenues against the increase in riskiness of government revenues.

While the tax on excess returns cannot address redistributive concerns in our model, the

tax on risk-free returns will generally have redistributive consequences. If individuals differed

only in labour skills, then under some common assumptions (e.g., when the Mean-Variance

framework applies or when there is only one type of risk) the optimal tax on risk-free capital

income would be zero. All redistribution can be accomplished by the nonlinear earnings tax.

That is no longer the case when individuals have different investment productivities. The

amount of savings and therefore the risk-free capital income of individuals with the same

earnings will vary with investment productivity, implying that the tax on risk-free capital

income can achieve redistribution over and above that achieved by the earnings tax.

Relationship to Existing Literature The evidence of a positive gradient in the rates

of return to capital has sparked a line of research that investigates the implications for the

optimal taxation of capital income. Gahvari and Micheletto (2016) and Kristjánsson (2016)

study a two-type model where the type with a higher labour-earning ability also has a higher

rate of return, finding that the optimal marginal tax on capital income is positive. Gerritsen

et al. (2020) study the optimal mix of non-linear taxes on incomes from labour and capital

with continuous types. They find that the marginal tax rates on capital income should differ

from zero, both when rates of return depend on labour ability and when they depend on the

scale of the portfolio. Gaillard and Wangner (2022) study the taxation of wealth in a macro-

economic model, also in a context with type- and scale-dependent returns to capital. They

show how the implications of taxing wealth depend on four statistics: the wealth Pareto tail,

the degree of type- and scale-dependence, and the extent to which returns reflect investment

productivity as opposed to rents. Scheuer and Slemrod (2021) also point out that differential

individual returns to investment can be due to rents rather than productivity differences, in

which case the argument for a capital income tax is strengthened. Schulz (2021) points out

that if rates of return are scale-dependent, then taxing capital will depress rates of return,
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leading to a lower capital tax in the optimum. Two crucial differences between these papers

and ours is that we allow for a separate tax on excess returns, which avoids distorting the

intertemporal allocation of the taxpayers’ consumption, and we allow for risk.

Regarding the taxation of risky capital income, the seminal contribution is that of Domar

and Musgrave (1944), formalized using an expected utility approach by Mossin (1968) and

Stiglitz (1969). They study a representative individual who maximizes expected utility by

allocating a given amount of wealth over a safe asset and a risky asset with a constant

expected return. They show that when the return on the risk-free asset is zero, a tax on

capital income will induce the individual to increase investment in the risky asset such that

private risk and expected utility remain unaltered. When the return on the risk-free asset is

positive, a tax on all capital income will cause the individual to increase investment in the

risky asset under the so-called Arrow assumptions about risk aversion, that is, absolute risk

aversion is decreasing in wealth while relative risk aversion is increasing. However, expected

utility will fall. Kaplow (1994) and Schindler (2008) show that when the return on the risk-

free asset is positive, the analogue of the Domar-Musgrave effect will apply if the capital

income tax applies only to excess returns. Sandmo (1977) shows that the results of Domar

and Musgrave (1944) remain valid when investors optimize a portfolio consisting of multiple

risky assets. Gordon (1985) and Kaplow (1994) show how the neutrality of capital income

taxes for risk taking remains true in general equilibrium models. Buchholz and Konrad

(2014) summarize the consequences of taxing idiosyncratic returns, noting the private sector

may choose not to insure all risks for incentive reasons. If this is the case, then government

insurance will introduce inefficiencies.

Another reason why taxing excess returns at very high rates may be undesirable is the

presence of aggregate risk. In theory, the government could use financial markets to smooth

the aggregate risk of its revenues over time. In practice however, it is unlikely that the

government can do so without limit or without distributional consequences. Christiansen

(1993) studies the optimal taxation of capital income when the government returns the risky
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tax revenues to a representative individual via changes in public goods. He does so in a

model with fixed income and one risky asset with linear returns. In this case, stochastic

public goods mitigate the consumption risk from holding risky assets. Schindler (2008)

alters this model to allow for separate taxes on risk-free and excess returns. He finds that

risk-free assets should not be taxed, while excess returns should be taxed, balancing public

risk against private risk. We follow this latter route, assuming that the government returns

part of the aggregate risk using a stochastic public good. Neither Christiansen (1993) nor

Schindler (2008) consider redistributive taxation.

The literature that studies optimal redistributive taxation has neglected the possibility

of risky capital income. For example, the recent dynamic optimal tax literature focuses

instead on idiosyncratic wage risk. The natural conclusion appears to be that there are good

reasons to tax capital income at positive rates for redistributional purposes, and that given

the Domar-Musgrave (1944) result, we should not worry too much about discouraging risk.

We show however that the shortcomings of this reasoning follow from the Domar-Musgrave

(1944) result itself: given that a tax on excess returns does not affect expected utilities, there

are no good grounds to expect that a tax on excess returns should serve a redistributional

purpose.

Road Map We proceeds as follows. Section 2 outlines the individual optimization

problem, and finds relevant properties. We derive optimal linear tax rates on risk-free and

excess returns to capital in Section 3. Section 4 concludes.

2 Individuals
Individuals are endowed with labour earning abilities, or skills, w ∈ [w,w], which are

distributed by the function Gw(w). The density function is gw(w) = Gw
w(w), where Gw

w(w) ≡

dGw(w)/dw, a convention we adopt throughout the paper. Besides their skill levels, individ-

uals differ in the expected returns on their private investments as discussed below.

Individuals live for two periods. In the first period, they supply labour ℓ, yielding non-
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stochastic labour income z ≡ wℓ. Labour income is taxed according to the nonlinear tax

function tℓ(z). Individuals consume c1 of their first-period disposable income and save s, so:

c1 = z − tℓ(z)− s. (1)

Savings s are invested in three assets: bonds b, market funds f and private investment

opportunities p, so:

s = b+ f + p. (2)

Using three assets allows us to clearly separate the different sources of risk. Bonds are

risk-free and yield a normal return rb, so bond income in period two is brb. Market funds

yield a stochastic market rate of return r̃m, impacted only by aggregate shocks. We denote

stochastic variables by a tilde. Total returns from market funds are f r̃m. Investment in

private investment opportunities p yields a return p(α+ ε̃), where ε̃ is an idiosyncratic shock

that is independent and identically distributed with zero mean. The shock ε̃ is uncorrelated

with the market returns. We follow the common assumption that the idiosyncratic shock ε̃

is added to the expected return α, which is independent of the size of investment for each

individual, but differs across individuals. The assumption that market risks are aggregate

while private investment risks are idiosyncratic captures the assumption that capital markets

fully insure idiosyncratic risk on market portfolios but private investments are not fully

insured.

Individuals differ ex ante in both their labour productivities and their expected rates of

return to private investment α ∈ [α, α]. We denote the two-dimensional types as θ ≡ (w, α),

with domain Θ ≡ [w,w] × [α, α]. We denote the joint cumulative distribution of skills and

expected returns to private investment by Gθ(θ), with density function gθ(θ). We make no

assumptions about the joint distributions of labour earning abilities w and returns to private

investment α.

When choosing labour supply, savings and portfolio composition, the individuals know

their type θ and the distributions of the capital income shocks, but not the realizations

9



of the shocks. Individuals who are ex ante equal differ ex post in the realizations of the

idiosyncratic shock ε̃. Individuals of the same type θ make the same decisions.

Total capital income in the second period is denoted by ỹ ≡ (s− f − p) rb+f r̃m+p(α+ε̃).

For tax purposes it is split in two separately declared components: a risk-free part yn at

interest rate rb, and the remaining excess part ỹe such that ỹ ≡ yn + ỹe, with:

yn ≡ srb, and ỹe ≡ f r̃m + p(α + ε̃)− (f + p)rb. (3)

Recall that we define excess returns to refer to all capital income that deviates from the risk-

free return, including risk premiums, stochastic shocks and rents from private investment.

Individuals pay linear taxes tnyn on the risk-free part of their capital income, and teỹe

on excess returns. Second-period consumption equals savings plus second-period after-tax

capital income:

c̃2 ≡ s+ (1− tn)yn + (1− te)ỹe. (4)

The government chooses a nonlinear labour income tax function and linear capital income

tax rates in the first period. It obtains labour income tax revenues in the first period

and capital income tax revenues in the second, and must satisfy an intertemporal budget

constraint described below. With aggregate risk in the capital markets, tax revenues will be

stochastic. The government returns this risk to the individuals in the second period using a

stochastic provision of a pure public good P̃ .

Given effective labour supply z, first-period consumption c1, realization of second-period

consumption c2 and the realized level of the public good P , an individual with skill w obtains

utility:

U
(
u
(
c1, c2

)
,
z

w
, P
)
. (5)

The utility function displays weak separability between intertemporal consumption allocation

and both labour effort and the public good, so preferences over c1 and c2 are independent of

ℓ and P .4

4The case where preferences over private and public consumption are not separable goes beyond the scope
of our paper. We merely use the public good to return the aggregate risk to the individuals. See Schindler
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Individuals choose their labour supply, first period consumption, total savings and portfo-

lio composition to maximize expected utility E[Ũ ] in (5), subject to their budget constraints

(1)–(2). Second period consumption is determined as a residual by (4). The solution to this

problem yields the value function E[Ṽ (tℓ(·), tn, te, P (·),θ)], which is the expected maximized

level of utility of an individual with type θ, given government policies.5

We assume throughout that second-order conditions for the individual optimization prob-

lem are met and focus on the first-order conditions. To simplify notation, we denote

Ũi ≡ (∂Ũ/∂u) · (∂u/∂ci), for i = 1, 2. The first-order conditions on earnings z and sav-

ings s are standard:

E[Ũℓ]

E[Ũ1]
= −(1− tℓz)w,

E[Ũ1]

E[Ũ2]
= 1 + (1− tn)rb. (6)

From the first-order conditions on portfolio choices f and p, we obtain the marginal risk

premiums required by the individuals:

(1− te)E[r̃m − rb] = −(1− te)
cov(Ũ2, r̃

m)

E[Ũ2]
, (7)

(1− te)(α− rb) = −(1− te)
cov(Ũ2, ε̃)

E[Ũ2]
. (8)

We assume an interior solution for the choice between risk-free and risky assets. Combining

conditions (7) and (8) and using definition (3) yields:

(1− te)E[ỹe] + (1− te)
cov(Ũ2, ỹ

e)

E[Ũ2]
= 0. (9)

The term E[ỹe] reflects the expected excess return to capital, which is positive (although some

realizations of ye are negative). The normalized covariance cov(Ũ2, ỹ
e)/E[Ũ2] is negative.

The size of the second term in (9) reflects the required total risk premium from the risky

investments. The left-hand side of (9) reflects the certainty equivalent of the after-tax excess

capital incomes. Individuals thus invest in the risky assets up to the point where the certainty

equivalent of their excess capital income equals zero. At the margin, they become indifferent

(2008) for a discussion of more general cases in a representative agent model. We verify the robustness of
our results in our longer working paper (Boadway and Spiritus, 2021), assuming the government returns the
risk of its revenues through a stochastic lump sum, potentially affecting the decisions of the individuals.

5When a function argument is a function itself rather than its value, we indicate this by adding (·) behind
the function name.
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between investing in risk-free and risky assets.

We denote the behavioural responses to policy perturbations by using subscripts. For

example, the response of labour income to a marginal increase in the tax rate on normal

capital income is ztn . We denote compensated responses using an asterisk, for example

z∗tn . Following Christiansen (1984), Saez (2002) and Jacobs and Boadway (2014), we split

the individual decision process into two stages. In the second stage, individuals take their

labour supply as given, and they choose their expenditures on first-period consumption and

savings, and their portfolio composition. In the first stage individuals choose their labour

supply, anticipating the outcome of the second stage. When we study the effects of policy

perturbations, we denote the effects on second-stage decisions conditional on labour income

using a superscript c, for example ỹectn .

We now formulate some properties of individual demand. Domar and Musgrave (1944),

Mossin (1968), Stiglitz (1969) and Sandmo (1977) derive comparative statics for the effect of

capital income tax changes on the demand for risky assets. In a representative agent setting

where portfolio size is given and the return on the risk-free asset is zero, the agent responds

to a change in the capital income tax by increasing the demand for the risky asset such

that expected utility is kept constant. Kaplow (1994) and Schindler (2008) show that this

Domar-Musgrave result also applies to a change in a tax on excess returns when the risk-

free asset has a positive return. In the following lemma, we extend the findings of Kaplow

and Schindler to our setting with heterogeneous agents with differential returns to private

investment and variable savings and labour supply.

Lemma 1 (Generalized Domar-Musgrave effect). A reform to the tax on excess returns te

has the following effects on outcomes for agents of a given type θ:

1. excess capital income moves in inverse proportion with the net of tax rate:

ỹete =
ỹe

1− te
. (10)

2. labour income, normal capital income and consumption in either period are not affected
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by a change in the tax on excess capital income:

zte = ynte = c1te = c̃2te = 0. (11)

3. individual welfare is not affected by the tax on excess capital income:

E[Ṽte ] = 0. (12)

Proof. See Appendix A.2.

Intuitively, if there is an increase in the tax on excess returns, then without behavioural

responses, both the expected value and the standard deviation of the net-of-tax excess returns

(1− te)ỹe decrease proportionally. This implies that the marginal utility of consumption Ũ2

becomes less responsive to the volatility of the excess returns. As a consequence, the net-

of-tax marginal risk premiums required by the individuals (the right-hand sides of (7) and

(8)) decline more than the effective decrease in the net-of-tax marginal risk premiums (the

left-hand sides of (7) and (8)). The individuals will extend their investments in the risky

assets up to the point where their required marginal risk premiums again equal the effective

marginal risk premiums — when their after-tax returns (1 − te)ỹe and thus second-period

consumption c̃2 are back at their original levels. Since also labour income and first-period

consumption are not affected by a change in the tax on excess returns, a reform to the tax

on excess returns does not affect individual welfare.6

An increase in the tax rate on excess returns has two effects on the tax revenues from an

individual’s excess returns, teỹe. First, there will be a mechanical increase in tax revenues,

equal to ỹe. Second, there will be increase in tax revenues due to the extension of investments

in risky investments, equal to teỹete . Summing these two effects and using (10), we obtain

the following corollary.

Corollary 1. An increase in the tax rate on excess returns causes tax revenues to rise by
6Bach et al. (2020) observe that risk aversions are heterogeneous. Lemma 1 remains valid in such a

setting. We ignore this possibility because interpersonal welfare comparisons in such a setting are fraught
with difficulties.
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the full amount of the increase in excess capital income:

d(teỹe)

dte
= ỹete . (13)

Intuitively, an increase in te induces an increase in excess capital income which causes

tax revenues to increase by the same amount as the increase in excess capital income. As

a consequence, the government bears all additional investment risk, and by (12) expected

utility remains unchanged. The increase in excess capital income includes both an increase

in rents from private investments and an increase in returns to risk. This result will be

important in determining the optimal tax on excess capital income below.

Lemma 1 and Corollary 1 are robust to assumptions about individual preferences. A

crucial assumption, however, is the linearity of the tax on excess returns on capital. We

use linear tax rates on capital income for two reasons. The first is that any curvature of

the tax function would affect the concavity of the net-of-tax returns to capital, which would

influence portfolio choices by the individuals. This would complicate our analysis, without

adding much intuition. The second reason is that linear taxes on capital income might be

collected by financial institutions, easing compliance.7

Note that Lemma 1 and Corollary 1 apply only to the tax on excess returns and not to

the tax on risk-free returns. The effect of the latter on expected utility is not offset by a

Domar-Musgrave effect. That would only be the case if, as in Mossin (1968) and Stiglitz

(1969), portfolio size were fixed.

3 The government

3.1 The government’s problem

The government imposes a nonlinear labour income tax tℓ(z) and linear taxes tn and

te on risk-free and excess capital income yn and ye. The government cannot observe the

allocation of savings among the different types of assets. One reason is that it is difficult
7Lemma 1 also crucially assumes that there is full loss-offsetting, that is symmetrical compensation for

negative excess returns.
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to distinguish between aggregate and idiosyncratic components of risk. Moreover, financial

institutions might repackage bundles of assets, for fiscal or other reasons.

The government has access to the bond market and it balances its budget over time. The

law of large numbers ensures that the government budget constraint is not affected by the

idiosyncratic shocks. Aggregate shocks do cause government revenue to be stochastic. The

provision of the public good varies with the aggregate shock according to the intertemporal

budget constraint in second-period values:

P (r̃m) =

¨
Θ

[
(1 + rb)tℓ(z) + teEE [ỹ

e|r̃m] + tnyn
]
dGθ(θ), (14)

where EE denotes an average over the realizations of the private investment risk, conditional

on the realization of the market rate of return.8

The government takes an ex ante perspective. It sets the tax instruments, together with

the spending on the public good P (rm), to maximize the sum of the taxpayers’ expected

utilities:

max
tℓ(·),tn,te,P (·)

¨
Θ

E[Ṽ (tℓ(·), tn, te, P (·),θ)]dGθ(θ), (15)

subject to the intertemporal budget constraint (14).

Note that we define social welfare in the first period, while we define the government’s

budget constraint in the second period. The government commits to its policies in the first

period, maximizing expected social welfare before the shocks are realized, while public good

provision is only set in the second period to close the budget constraint.

3.2 Optimal taxes

We now have all the building blocks to study the government problem of maximizing

expected social welfare (15) subject to budget constraint (14), taking into account the be-
8The expectation operator E[·] refers to the average of the operand over all potential realizations of

the shocks (rm, ε). The conditional expectation operator EE [·|rm] denotes an average over all potential
realizations ε of private investment risk, conditional on the realization rm of market risk. The quantity
EE [ỹ

e|r̃m] contains aggregate risk, but no idiosyncratic risk.
We assume that the government cannot pool aggregate risk over time by borrowing. For example, the

aggregate risk might manifest itself as a once-over shock in the second period of our model. To pool that
shock would involve borrowing over the indefinite future which would be very demanding.
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havioural responses of the individuals. To find the optimal linear tax rates tn and te, we use

the standard approach, demanding that small perturbations of the tax rates do not affect so-

cial welfare. To characterize the nonlinear instruments tℓ(·) and P (·), we use a perturbation

approach similar to that introduced by Saez (2001).

A difficulty in constructing the Lagrangian is that the government budget depends on the

state of the world. Thus, there is no single budget multiplier for the government optimization

problem. To each realization of the market shock rm corresponds a budget multiplier λrm .

To reflect this, we introduce a stochastic budget Lagrange multiplier λ̃. Each realization λrm

of the stochastic multiplier can be interpreted as the social value of an additional unit of

resources in the second period if the realization of the market shock equals rm.

We introduce some notation before discussing the optimality conditions. Suppose the

government gives an additional unit of income in the first period to an individual of type

θ = (w, α). The effect on social welfare, denoted β(θ), consists of two parts. The first is a

direct effect on the expected utility of this individual. The second are income effects on the

different tax bases, which affect the tax revenues. The monetary value of the effect on social

welfare is:9

β(θ) ≡ E[Ũ1]

E[λ̃]
+ (1 + rb)tℓzzρ + tnynρ + teE[ỹeρ] + te

cov(λ̃, ỹeρ)

E[λ̃]
, (16)

where subscripts ρ indicate the effects of the additional income on the tax bases. The term

β(θ) indicates the net marginal social utility of income for an individual of type θ, following

Diamond (1975). The variation of β(θ) with skill captures the benefits of redistributing

income between individuals with different earning abilities, whereas the variation of β(θ)

with the expected return to private investment captures the benefits of redistributing income

between individuals with different investment productivities. The social welfare weights

include a social marginal risk premium cov(λ̃, ỹeρ)/E[λ̃], reflecting the welfare cost due to the

uncertainty of the effects on government revenue from the tax on excess returns.
9We derive this term from the government’s Lagrangian in Appendix A.4. We rewrite the income effects

on tax revenue from excess capital income using the identity E[λ̃ỹeρ] = E[λ̃]E[ỹeρ] + cov(λ̃, ỹeρ).
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We denote the marginal excess burden of a change in the marginal tax rate on labour

income as:

W(θ) ≡ −(1 + rb)tℓzz
∗
σ − tnyn∗σ − teE [ỹe∗σ ]− te

cov(λ̃, ỹe∗σ )

E[λ̃]
, (17)

where subscripts σ indicate the effects of an infinitesimal increase in the marginal tax on

labour income. The marginal excess burden quantifies, in monetary terms, the social welfare

loss due to the compensated revenue effects of a small increase in the marginal tax rate on

labour income at the income level chosen by a type-θ individual. The first term equals the

loss from compensated responses of labour income, the second and third terms equal the

losses from compensated responses of risk-free and excess capital incomes, corrected for the

uncertainty of the latter.

The first-order conditions for the labour income tax and the public good provision are

standard, and are briefly discussed in Appendix A. In the following subsections, we focus on

the optimal tax rates on the normal and excess capital incomes.

3.2.1 Optimal linear tax on excess capital income

The government chooses te to maximize social welfare (15) subject to the budget con-

straint (14). By Lemma 1, a change in te does not affect expected social welfare: it only

affects the government budget constraint. Therefore, we can write the first-order condition

for the tax on excess returns as (see Appendix A.6):¨
Θ

{
E[λ̃ỹe] + teE[λ̃ỹete ]

}
dGθ(θ) = 0. (18)

To interpret this condition, we make use of the first-order condition on the optimal provision

of the public good (see Appendix A.7):

λrm =

¨
Θ

EE [ŨP |rm]dGθ(θ). (19)

Using (18)–(19) and (10), we obtain the following theorem.

Theorem 1. The optimal linear tax on excess capital income satisfies the following condition:
¨

Θ

E [ỹete ] dG
θ(θ) +

¨
Θ

cov
(˜

Θ
EE [ŨP |r̃m]dGθ(θ), ỹete

)
E[λ̃]

dGθ(θ) = 0. (20)
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The optimal tax on excess returns is not affected by the social welfare weights.

Eq. (20) is analogous to condition (9) determining risky investments by the household.

The first term in (20) is the expected increase in tax revenue when the government increases

te. By Corollary 1, this is the induced change in excess capital income. The second term,

which is negative, is the government’s risk premium associated with the uncertainty of the

increase in excess capital income. At the optimum, the additional revenue just balances

the increase in risk to the government. Note that Theorem 1 does not require that the

government optimizes the tax on labour income.

One of the key differences between our paper and the literature is that we introduce

heterogeneity in the expected excess returns. Intuitively, one might expect that this would

lead to additional terms in (20), reflecting the distributional benefits of the tax on excess

returns. However, optimality condition (20) does not depend on the social welfare weights β.

Lemma 1 shows why this is the case: individuals respond to a tax increase on excess returns

by proportionally increasing their investments in the risky assets, such that their expected

utility remains unaltered. A tax on excess returns, in our model, is unable to redistribute

welfare differences that stem from ex ante characteristics.

There is another way to understand the absence of the social welfare weights in (20).

Recall from (15) that the government cares about the distribution of expected utilities. Thus,

what matters from a distributional perspective are the certainty equivalents of the excess

capital incomes. By (9) the certainty equivalents of excess capital income are equal to zero

for all optimizing individuals. Consequently, in our model, there is no scope for redistribution

based on ex ante characteristics through the tax on excess returns.

However, the tax on excess returns still plays a supporting role in achieving redistributive

objectives. As Lemma 1 shows, an increase in te induces agents to increase risky investments

and therefore excess capital income. As we showed in Corollary 1, the increase in excess

capital income is fully reflected as an increase in the tax revenue on excess capital income.

In presence of private investment risk, the additional tax revenues on excess returns thus
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capture the increases in the rents from private investment that are caused by it, which implies

that it constitutes a fully efficient source of tax revenue. Increases in te are limited by the

fact that they give rise to riskiness in the provision of the public good.

We now show that te should be strictly between zero and unity. Suppose first that te = 0.

The first term in (20) is positive since ỹete = ỹe when te = 0 by (10). The second term is zero

since without a tax on excess returns government revenues are not stochastic. Therefore,

te = 0 cannot be optimal. Similarly, we can exclude the case te < 0, because in this case the

covariance in (20) would be positive. Therefore, the only remaining possibility is a positive

tax on excess returns te > 0.

To see that te should not be larger than 100%, consider first-order conditions (7)–(8) for

the composition of the portfolios. If te > 1, then gains are turned into losses and losses are

turned into gains. The only way for first-order conditions (7)–(8) to hold, is for individuals

to undertake risky investments only if expected excess returns are negative, E[ỹe] < 0. Given

our assumption that the expected excess rates of return to both risky assets are positive, this

would imply that individuals would assume negative investments in both risky assets. In

this case the first term in (20) remains positive because of (10). The covariance in (20) will

also be positive, as higher market returns will lead to more negative revenues from excess

returns, so lower public good provision and a larger marginal utility of the public good.

Since both terms in (20) would be positive, the condition cannot hold and te > 1 cannot

be optimal. In the border case where taxes on excess returns are fully taxed away, te = 1,

it makes no difference for the individuals whether they invest in safe or risky assets (see

first-order conditions (7)–(8)). In this case, our model is not well defined. If we make the

realistic assumption that there is some net cost associated with investing in risky assets, it

makes sense that individuals will only invest in safe assets when excess returns are fully taxed

away, and we can realistically exclude the case where te ≥ 1. We summarize our findings in

Corollary 2 (see Appendix A.8).10

10In our longer working paper (Boadway and Spiritus, 2021), we study a case where contrary to the present
paper there is no idiosyncratic risk and the government returns the aggregate risk of its revenues using a
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Corollary 2. The optimal linear tax rate on excess capital returns is strictly positive, and

strictly smaller than 100%:

0 < te < 1.

If there is more aggregate risk, or if individuals are more risk averse with respect to the public

good, then the optimal tax rate on excess returns is smaller.

To gain more insight into the optimal tax on the excess returns, let us briefly make some

further assumptions. First, assume that the returns the risky assets are jointly normally

distributed, so any linear combination of them has a univariate normal distribution. This

assumption implies that individuals optimize their portfolios according to the Mean-Variance

framework. Second, assume that all individuals have a constant Arrow-Pratt measure of

global absolute risk aversion with respect to public good provision, so the following quantity

is constant: A ≡ −E[ŨPP ]/E[ŨP ]. We prove the following Corollary in Appendix A.9.

Corollary 3. Assume individuals optimize their portfolios according to the Mean-Variance

framework, and they have a constant Arrow-Pratt measure of global absolute risk aversion

A with respect to public good provision. Then the optimal linear tax rate on excess capital

returns is:
te

1− te
=

˜
Θ
E [ỹete ] dG

θ(θ)

Avar
(˜

Θ
ỹedGθ(θ)

) . (21)

Corollary 3 clearly illustrates our findings in Theorem 1. On the one hand, the more

risk averse individuals are with respect to the public good (larger A) or the more volatile is

the tax base (larger var(
˜

Θ
ỹedGθ(θ))), the lower should be the tax on excess returns. On

the other hand, the more the expected value of the tax base increases as the tax on excess

returns increases (larger
˜

Θ
E[ỹete ]dG

θ(θ)), the higher should be the tax on excess returns.

uniform stochastic lump sum rather than a stochastic public good. We show that the tax on excess returns
then becomes largely irrelevant. As soon as there is also uninsured idiosyncratic risk, the government should
tax excess returns at high rates for insurance reasons.
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3.2.2 Optimal linear tax on risk-free capital income

We derive in Appendix A the first-order condition for the tax on risk-free capital income.

Following Saez (2002), we assume that among individuals who earn the same labour income,

the compensated behavioural responses to a labour tax reform are not systematically corre-

lated with the propensities to save out of labour income.11 Let Gz(z) denote the cumulative

distribution function for labour incomes in the tax optimum, and for any function h(θ), let

h(z) denote the average of h(θ) for all types θ who choose labour income z. The following

theorem then characterizes the optimal tax on risk-free capital income.

Theorem 2. Suppose labour income is optimally taxed, and the labour tax wedge W is not

correlated with the propensity to save out of labour income: covΘ (W , yncz |z) = 0. The optimal

linear tax on risk-free capital income then balances its distortions against its distributional

benefits:

tn
ˆ z

z

ync∗tn (z)dGz(z) =
E[Ũ2]

E[Ũ1]

ˆ z

z

covΘ(β, y
n|z)dGz(z) (22)

− te
ˆ z

z

(
E[ỹec∗tn (z)]− χc∗(z)

)
dGz(z)

−
ˆ z

z

W(z)

(
dyn

dz
− ∂ync

∂z

)
E[Ũ2]

E[Ũ1]
dGz(z),

where χ(z) denotes the social risk premium associated with the uncertainty of tax revenues

from excess capital income, for individuals with labour income z:

χ(z) ≡ cov(λ̃, ỹetn|z)
E[λ̃]

.

Consider first the right-hand side of (22). The first term involves the population covari-

ance between β and yn conditional on labour income, and reflects the potential to use the

tax on risk-free returns to obtain distributional benefits that cannot be obtained through a

tax on labour income. If individuals only differ in their ability to earn labour income, then

the distributional characteristic of risk-free capital income is zero, covΘ(β, yn|z) = 0, and
11This corresponds to Assumption 2 of Saez (2002, p. 225), who argues there are no reasons to think that

such correlations exist, and that since it is difficult to empirically check this condition it seems reasonable
to assume that it holds.
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there is no scope for redistribution through the tax on risk-free capital income: all ex ante

redistribution takes place through the tax on labour income. If instead covΘ(β, y
n|z) ̸= 0,

then the tax on risk-free returns should be used to redistribute from individuals with lower

welfare weights to those with higher welfare weights, conditional on labour income.

Given the heterogeneity of the expected returns to private investment, the welfare weights

do vary with the amount of risk-free capital income, conditional on labour income, so

covΘ(β, y
n|z) ̸= 0. We show in Appendix A.2 that when the utility function is additively

separable between consumption in both periods and between consumption and labour sup-

ply, and individual preferences exhibit constant absolute risk aversion, then changes in the

expected rate of return α only have income effects, both on savings s and on labour income

z. Those individuals with a low return to private investment, and thus those with a higher

welfare weight conditional on labour income, are then the ones who save the most to smooth

their consumption over the life cycle. The covariance covΘ(β, y
n|z) would thus be positive:

conditional on labour income, the individuals with the highest risk-free capital income would

also have the highest welfare weights. The presence of the distributional characteristic of

risk-free capital income in (22) then puts a downward pressure on the optimal tax on risk-free

capital income.

Lemma 2. If preferences are additively separable between consumption in the two periods and

absolute risk aversion is constant, then the distributional characteristic of risk-free capital

income conditional on labour income is positive:

covΘ(β, y
n|z) > 0.

With more general preferences, one cannot unambiguously sign the covariance covΘ(β, yn|z)

based on theoretical considerations alone. Even if there is growing empirical evidence of per-

sistent heterogeneity in rates of return after correcting for risk (e.g., Fagereng et al., 2020), it

remains unclear to what extent such differences are independent of differences in the ability

to earn labour income. The sign and the size of covΘ(β, yn|z) thus remain unclear.

The second term on the right-hand side of (22) concerns the compensated effect of an
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increase in tn on tax revenue from excess capital income, conditional on labour income. The

government needs to account not only for the expected effect of the tax increase on excess

capital income E[ỹec∗tn ], but also for the welfare effect of the uncertainty therein through the

risk premium χ. The sign of the term χc∗ is opposite to that of E[ỹec∗tn ], since λ rises as rm

falls and vice versa.12 It is not clear a priori whether the total impact of the second term

in (22) on social welfare is positive or negative. The following lemma, which we prove in

Appendix A.10, shows how the second term on the right-hand side of (22) reflects the change

in the relative importance of idiosyncratic and aggregate risk due to a perturbation of tn.

Lemma 3. The effect of a perturbation of tn on the expected social value of government

revenue from excess returns is determined by the relative shift towards or away from private

investment:

te
ˆ z

z

(
E[ỹec∗tn (z)]− χc∗(z)

)
dGz(z) = T p ·

(
T pc∗
tn

T p
− T fc∗

tn

T f

)
,

where T p ≡ te
˜

Θ
(α − rb)pdGθ(θ) and T f ≡ te

˜
Θ
E[r̃m − rb]fdGθ(θ) denote the respective

tax revenues from excess returns from private and market investments.

If idiosyncratic risk on average becomes relatively more important, e.g., because en-

trepreneurs undertake new investments that are not correlated with the market, then the

total impact on social welfare is positive. The welfare effect of the increased expected gov-

ernment revenue outweighs the effect of the increased uncertainty, because the sources of

government revenue become more diversified. We show in Appendix B that various simpli-

fications of our model lead to the conclusion that the second term on the right-hand side of

(22) equals zero. This is most obviously the case when there is only idiosyncratic or only ag-

gregate risk. Also, when individuals optimize their portfolios according to the Mean-Variance

framework, we find that the second term in (22) equals zero when the elasticities of p and

f with respect to tn are constant over the income distribution. In those cases, the expected

revenue effects of a reform of tn, which are typically used as sufficient statistic in optimal tax
12Use (3) to find: χ = cov(λ̃, ỹetn |z)/E[λ̃] = f tncov(λ̃, r̃

m)/E[λ̃].
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studies, are cancelled out by the welfare cost of their uncertainty. Our findings illustrate the

warning of Kleven (2020), who notes that the sufficient statistics approach implicitly relies

on strong assumptions on preferences and on the decision environment. Even if the second

term on the right-hand side of (22) becomes zero under common theoretical assumptions, its

sign is ultimately an unanswered empirical question.

The third term on the right-hand side of (22) concerns the difference between the cross-

sectional variation and the individual variation of normal capital income. Since we assume

that individuals have identical preferences that are separable between leisure and consump-

tion, there is only one reason why this term may differ from zero: the expected rates of

return to private investment could be correlated with the labour productivities. Suppose

that, as argued above, individuals with higher expected returns to private investment save

less, conditional in labour income, and suppose that expected returns to private investment

are positively correlated with labour productivity. Then conditional on labour income, lower

savings indicate higher labour productivities. It is then optimal to implement a lower tax on

normal capital income, because doing so would alleviate the distortions caused by the tax

on labour income.

The integral on the left-hand side of (22) is negative: a compensated increase of the tax

on risk-free capital income decreases savings and thus risk-free returns, conditional on labour

income. Furthermore, we showed in the previous subsection that the tax rate te on excess

returns is never negative. If the right-hand side of (22) is positive, then Theorem 2 indicates

that the optimal tax on risk-free returns to capital income is negative.13

13The optimality condition in Theorem 2 is similar to the condition for optimal linear commodity taxation
of Spiritus (2024). He finds that the optimal tax on a commodity is determined by the marginal excess
burden caused by that tax, the distributional characteristic of the commodity conditional on labour income,
and the difference between the individual and cross-sectional variations of consumption of the commodity.
The main difference between Spiritus (2024) and Theorem 2 is that the latter contains additional terms to
account for the welfare cost of the riskiness of the tax revenues.
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4 Conclusion
We have studied optimal linear taxation of risk-free and excess returns to capital, along-

side an optimal nonlinear tax on labour income, in an intertemporal model with risky assets.

Our approach differs from the standard Mirrlees optimal income tax analysis in a number

of dimensions. We incorporate portfolio choice into a two-period model with heterogeneous

households who both supply labour and save in the first period. Portfolios include both

safe and risky assets where the latter combine market assets with aggregate risk and private

investment with idiosyncratic risk. Individuals differ both in their labour productivity and

in the expected return on their private investments. Aggregate risk on market assets is re-

flected in the government’s revenue stream, which in turn leads to uncertainty in government

spending on public goods.

A tax on excess returns taxes both rents of private investments and returns to risk. One

might expect that since individuals differ in the productivity of their private investments,

taxing excess returns might serve a redistribution role. However, in our stylized model, a

Domar-Musgrave effect nullifies such a role: individuals respond to a tax on excess returns

by adjusting their portfolios, taking on more risk such that their expected utility remains

unchanged. As the size of the risk premium before taxation increases, tax revenue from

excess returns also increases. Part of that tax revenue results from higher rents generated

from increased private investments. These are fully taxed away by the government and

represent a fully efficient source of tax revenue. Part of the tax revenue represents additional

risky revenues resulting from increased investment in market assets. The revenue-generating

role of the tax on excess returns is balanced against the welfare cost of the uncertainty of

those revenues. The higher is the taxpayers’ risk aversion with respect to the public good

and the more volatile are the revenues from the tax on excess returns, the lower the tax on

excess returns should be.

A tax on risk-free returns can have redistributive consequences and can serve as a com-

plement to the progressive earnings tax. Individuals of different investment productivities
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but the same labour earnings will generally differ in their savings and risk-free capital in-

come. However, the relation between investment productivity and savings is ambiguous:

under reasonable assumptions and conditional on labour income, more productive persons

might save less. If so, the optimal tax on risk-free capital income would be negative. This

implies that, while it is optimal to tax risk-free capital income and excess returns to capital

at different rates, the RRA system proposed by the Mirrlees Review (2011) will generally

not be optimal.

Our stylized model has certain limitations. It assumes that taxes on capital income are

linear, and it ignores any incentive effects that taxing excess returns to capital might incur.

Additionally, it does not consider scale effects or general equilibrium effects, and it simplifies

the life-cycle to just two periods. Our objective is not to create a comprehensive model, but

rather to establish a benchmark demonstrating that optimal tax results are sensitive to the

inclusion of risky assets. The generalized Domar-Musgrave (1944) effect means that results

from a model with deterministic capital incomes cannot be directly extrapolated to a context

with risky capital incomes. One should be particularly careful when applying a sufficient-

statistics framework. If tax revenues are uncertain, the change in expected tax revenues due

to a policy reform is no longer a sufficient measure for its effect on social welfare.
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Appendix A First-order conditions for the government
The government uses two linear instruments (tn and te) and two nonlinear instruments

(tℓ(z) and P (r̃m)) to maximize social welfare subject to a budget constraint. For the opti-
mization of the linear instruments we derive standard first-order conditions. The optimiza-
tion of the nonlinear instruments is more challenging.

A standard approach to optimize a nonlinear function is the Euler-Lagrange formalism.
A standard assumption of the Euler-Lagrange method is that the arguments of the functions
that are being optimized, are exogenous. This assumption is clearly violated when optimizing
a tax function: individuals change their behaviour when the tax system changes. The tax
base is endogenous. Saez (2001) develops a heuristic perturbation method to overcome this
difficulty in a deterministic setting where the government only levies a nonlinear tax on
labour income. For a given perturbation of the tax function, he lists the effects on the
government objective and requires that the total effect is zero. Recent contributions by
Werquin et al. (2015) and Spiritus et al. (2022) further formalize the perturbation method,
enabling its application to more complex policy questions.

We adapt a standard proof for the Euler-Lagrange equation (see, e.g., Arfken and We-
ber, 2005 chapter 17), to incorporate behavioural responses to perturbations of the policy
instruments. We start in Subsection A.1 by formally defining our perturbations to the pol-
icy instruments. In Subsection A.2 we study the effects of our perturbations on individual
behaviour. This allows setting up a Lagrange equation for our problem in Subsection A.3,
and deriving the first-order conditions for the government in the remaining subsections.

A.1 Perturbations to the policy instruments
If a given policy instrument is optimal, then any perturbation to it leaves the government

objective unchanged. To find optimal values for the linear instruments, we perturb tn and
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te and demand that the effects on the government objective sum to zero. For the nonlinear
instruments, we introduce perturbation functions. For the tax on labour income, for exam-
ple, we introduce a perturbation function ϵzηz(z). The function ηz(z) models an arbitrary,
nonlinear but sufficiently smooth perturbation. The parameter ϵz is an infinitesimal that
allows varying the size of the perturbation. After the perturbation, the tax liability for any
labour income z equals tℓ(z) + ϵzηz(z). Together, the entities ϵz and ηz allow modelling
any small perturbation to the tax function tℓ(z). If the value of ϵz equals zero, then the
unperturbed tax function is in place. If the optimal value of ϵz is zero for every function
ηz, then we know that the unperturbed tax function is optimal.14 Similarly, we introduce
perturbations ϵPηP (r̃m) for the state-dependent public good.

To verify the optimality of the government policies, we must verify that any perturbation
leaves the government objective unchanged. We will show in the next subsection that the
effects on individual behaviour of any perturbation of the labour income tax schedule can be
decomposed into income and substitution effects, and can thus be described using simpler
perturbation parameters. For this purpose, we parameterize the labour tax function after the
perturbations as tℓ(z)+ϵzηz(z)+σz−ρ, where the parameter ρ shifts the intercept and σ shifts
the slope of the tax function. The corresponding marginal tax rate is tℓz(z) + ϵzηzz(z) + σ.15

Furthermore, we will show that the general perturbations to the public good ϵPηP (r̃m) can be
decomposed into local perturbations for specific realizations of the state of the world rm. In
the main text we model such local perturbations as direct changes to the values P (rm). We
now model these local perturbations more formally using a Dirac delta function δ(r̃m − rm),
and we let πm parameterize the size of the reforms.16 The provision of the stochastic public
good after the perturbations then equals P (r̃m) + ϵPηP (r̃m) + πmδ(r̃m − rm).

The budget constraints taking into account all perturbation parameters are:

C1(z, s, ϵz, σ, ρ) ≡z − s− tℓ(z)− σz − ϵzηz(z) + ρ, (23)

C̃2(s, f, p, tn, te, ρ2) ≡s+ (1− tn)rbs+ (1− te)ỹe(f, p) + ρ2, (24)

where ỹe(f, p) is defined by (3), and ρ2 denotes a deterministic lump sum that is given to all
individuals in the second period.

14Saez (2001) considers one specific perturbation, where the function ηz alters the slope of the tax schedule
in a small interval around a specific income level, it leaves the tax schedule unaltered below that income
level, and it changes the level but leaves the slope of the tax schedule unaltered for individuals with higher
incomes. Given the complexity of our model, we consider more general perturbations, and formally derive
their effects on the government objective.

15For previous papers that parameterize nonlinear tax schedules to study comparative statics, see, e.g.,
Christiansen (1981) and Jacquet et al. (2013).

16The Dirac delta function δ(rm − Rm) is defined such that δ(rm − Rm) = 0 whenever rm ̸= Rm, and
it integrates to one on the set of real numbers:

´∞
−∞ δ(rm − Rm)drm = 1. This setup allows modelling a

localized reform to the lump sum with non-zero effects on social welfare.
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A.2 Individual behaviour
In this subsection we derive properties of individual supply and demand, which we will

use in the following subsections to characterize the optimal policies. It is mathematically
convenient to redefine utility function (5) by substituting budget constraints (23) and (24)
for c1 and c2. An individual facing the perturbed government policies thus maximizes the
expected value of the following utility function:

Ũ(z,s, f, p, σ, ϵz, ρ, tn, te, ϵP , πm, ρ2)

≡ U
(
u(C1(z, s, ϵz, σ, ρ), C̃2(s, f, p, tn, te, ρ2)),

z

w
, P (r̃m, ϵP , πm, rm)

)
, (25)

where we write P (r̃m, ϵP , πm, rm) as shorthand for P (r̃m) + ϵPηP (r̃m) + πmδ(r̃m − rm).
The first-order conditions for the individual are:

E[Ũz] = E[Ũs] = E[Ũf ] = E[Ũp] = 0. (26)

Denote the supply function for labour income as z(·) and denote the demand functions for
assets as s(·), f(·) and p(·). Each of the supply and demand functions has as arguments type
θ and the perturbation parameters σ, ϵz, ρ, tn, te, ϵP , πm and ρ2.

Substituting the supply and demand functions into the utility function yields indirect
utility Ṽ(·), which also is a function of type and of the perturbation parameters. Applying
the envelope theorem to problem (25) yields the following properties:

E[Ṽϵz ] = −E[Ũ1]η
z(z), E[Ṽσ] = −E[Ũ1]z, (27)

E[Ṽte ] = 0, E[Ṽtn ] = −E[Ũ2]y
n, E[Ṽρ] = E[Ũ1], E[Ṽρ2 ] = E[Ũ2], (28)

E[ṼϵP ] = E[ŨPη
P (r̃m)]. (29)

Combining these envelope conditions allows deriving Slutsky properties, as we do in the
following Lemma.

Lemma 4 (Slutsky properties). We find the following Slutsky properties for individual be-
haviour:

• for any k = z, s, f, p, the behavioural effects of perturbations σ and tn can be decomposed
into income effects and compensated effects:

k∗
σ = kσ + zkρ, k∗

tn = ktn + ynkρ2 . (30)

• individual behaviour complies to the following Slutsky symmetry between labour income
and risk-free capital income:

z∗tn =
E[Ũ2]

E[Ũ1]
yn∗σ . (31)

33



Proof. Denote the value of any demand or supply function k in the situation before any
reforms as ki. Introduce the indirect utility in terms of the different compensated reforms
as:

V∗(θ, σ, tn) ≡ V
(
θ, σ, tn, ρ = ziσ, ρ2 = ynitn

)
,

where we omit irrelevant function arguments. Use envelope conditions (27)–(29) to find:

E[Ṽ∗
σ] = E[Ṽσ] + E[Ṽρ]z

i = −E[Ũ1](z − zi), (32)

E[Ṽ∗
tn ] = E[Ṽtn ] + E[Ṽρ2 ]y

ni = −E[Ũ2](y
n − yni), (33)

1. In the situation without any reforms, (32)–(33) show that E[Ṽ∗
σ] = E[Ṽ∗

tn ] = 0. It
follows that the combined reforms in (30) are indeed compensated.

2. Evaluate the partial derivative of (32) with respect to tn, and that of (33) with respect
to σ, each time in the situation before any reforms:

E[Ṽ∗
σtn ] = −E[Ũ1]z

∗
tn , (34)

E[Ṽ∗
tnσ] = −E[Ũ2]y

n∗
σ . (35)

Young’s theorem demands that the second-order partial derivatives of any function are
symmetric. Apply this requirement to (34) and (35) to find Slutsky symmetry (31).

If there is a marginal change to any of the type or perturbation parameters ν, then
individuals change their behaviour, such that first-order conditions (26) remain satisfied.
We thus obtain for any k = z, s, f, p:17

0 =
dE[Ũk]

dν
= E[Ũkz]zν + E[Ũks]sν + E[Ũkf ]fν + E[Ũkp]pν + E[Ũkν ]. (36)

Write equation (36) in matrix notation to find the following lemma.

Lemma 5. The effects of a change of any parameter ν = w, σ, ϵz, ρ, tn, te, ϵP , πm or ρ2

17The behavioural effects zν , sν , fν and pν are total effects. This means that they include not only the
direct effects of a change in the parameter ν. They also include second-round effects due to the nonlinearity
of the tax on labour income. If a change in the parameter ν causes a change in labour income z, this will
cause a change in the marginal tax on labour income tℓz(z), which will cause further effects on the choices of
the individuals. Jacquet et al. (2013) and Jacobs and Boadway (2014) include similar second-round effects in
their elasticities. The functions E[Ũz], E[Ũs], E[Ũf ] and E[Ũp] are equivalent to the shift functions introduced
by Jacquet et al. (2013).
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on the choices of the individuals are given by:
zν

sν

fν

pν

 = −(E[H̃])−1 · E



Ũzν

Ũsν

Ũfν

Ũpν


 ,

where H̃ denotes the Hessian of utility function (25).

Lemma 5 reduces the task of finding relations between the effects of different perturba-
tions, to finding relations between the partial derivatives of the functions Ũz, Ũs, Ũf and Ũp.
The following Lemma uses Lemma 5 to find relations between the income effects in both
periods.

Lemma 6. The behavioural effects of perturbations to the tax intercepts in the two periods
are related as follows:

zρ =
E[Ũ1]

E[Ũ2]
zρ2 , sρ =

E[Ũ1]

E[Ũ2]
sρ2 + 1, fρ =

E[Ũ1]

E[Ũ2]
fρ2 , pρ =

E[Ũ1]

E[Ũ2]
pρ2 . (37)

Proof. Note the following second-order derivatives, evaluated in the situation before any
reforms:

E[Ũzρ] = (1− tℓz)E[Ũ11], E[Ũzρ2 ] = −(1− tℓz)E[Ũ12], (38)

E[Ũsρ] = −E[Ũ11] + E[Ũ12]
E[Ũ1]

E[Ũ2]
, E[Ũsρ2 ] = −E[Ũ12] + E[Ũ22]

E[Ũ1]

E[Ũ2]
,

∀k = f, p : E[Ũkρ] = (1− te)E[Ũ21ỹ
e
k], E[Ũkρ2 ] = (1− te)E[Ũ22ỹ

e
k], (39)

and thus:

∀k = z, s, f, p : E[Ũks] =E[Ũkρ2 ]
E[Ũ1]

E[Ũ2]
− E[Ũkρ]. (40)

Write (40) in matrix notation:

E[Ũ1]

E[Ũ2]
E



Ũzρ2

Ũsρ2

Ũfρ2

Ũpρ2


− E



Ũzρ

Ũsρ

Ũfρ

Ũpρ


 = E



Ũzs

Ũss

Ũfs

Ũps


 .
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Substitute Lemma 5 on the left-hand side and fully write the Hessian E[H̃]:

−E



Ũzz Ũzs Ũzf Ũzp

Ũsz Ũss Ũsf Ũsp

Ũfz Ũfs Ũff Ũfp

Ũpz Ũps Ũpf Ũpp


 · E

E[Ũ1]

E[Ũ2]


zρ2

sρ2

fρ2

pρ2

−


zρ

sρ

fρ

pρ


 = E



Ũzs

Ũss

Ũfs

Ũps


 ,

or equivalently:

−E



Ũzz Ũzs Ũzf Ũzp

Ũsz Ũss Ũsf Ũsp

Ũfz Ũfs Ũff Ũfp

Ũpz Ũps Ũpf Ũpp


 · E

E[Ũ1]

E[Ũ2]


zρ2

sρ2

fρ2

pρ2

−


zρ

sρ

fρ

pρ

+


0

1

0

0


 = 0.

This last equation implies Eq. (37).

When there is a marginal increase in the perturbation parameter εz, then at any labour
income z, the tax liability will increase by ηz(z), and the marginal tax rate will increase by
ηzz(z). The following Lemma then shows how the behavioural effects such a perturbation can
be decomposed into substitution effects and income effects.

Lemma 7. The behavioural effects of any perturbation function ϵzηz can be decomposed into
substitution and income effects:

kϵz = k∗
ση

z
z − kρη

z. (41)

Proof. Note the following second-order derivatives of (25), evaluated in the situation before
any reforms, and substitute Eqs. (38) and (39):

E[Ũzσ] = −E[Ũ1]− E[Ũzρ]z,

∀k = s, f, p : E[Ũkσ] = −E[Ũkρ]z,

∀k = z, s, f, p : E[Ũkϵz ] = (E[Ũkσ] + zE[Ũkρ])η
z
z − E[Ũkρ]η

z. (42)

Substitute (42) into Lemma 5 and use Slutsky decomposition (30) to find Eq. (41).

In the following Lemma, we apply Lemma 5 to find the effects of a change in the tax on
excess returns te on the behaviour of the individuals.

Lemma 8. A change in the tax on excess returns has no effect on labour supply and on
savings:

zte = ste = 0.
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A proportional change in the tax on excess returns, causes a proportional change in the
investment in both risky assets:

fte =
f

1− te
, pte =

p

1− te
.

Proof. Note the following second-order derivatives, evaluated in the situation before any
reforms, and substitute E[Ũfs] and E[Ũps] from Eq. (40):

E[Ũfz] =
1− te

f

1

w
E

[(
Ũ2ℓ − Ũ21

E[Ũℓ]

E[Ũ1]

)
(r̃m − rb)f

]
, (43)

E[Ũff ] =
1− te

f
E[(1− te)Ũ22(r̃

m − rb)2f ], (44)

E[Ũfp] =
1− te

f

1− te

p
E[Ũ22(r̃

m − rb)f(α + ε̃− rb)p], (45)

E[Ũpz] =
1− te

p

1

w
E

[(
Ũ2ℓ − Ũ21

E[Ũℓ]

E[Ũ1]

)
(α + ε̃− rb)p

]
, (46)

E[Ũpp] =
1− te

p
E
[
(1− te)Ũ22(α + ε̃− rb)2p

]
, (47)

∀k = z, s, f, p : E[Ũtek] = − f

1− te
E[Ũkf ]−

p

1− te
E[Ũkp]. (48)

Apply Cramer’s rule to Lemma 5 and substitute E[Ũtez] and E[Ũtes] from Eq. (48) to find
the effects on labour income and savings:

zte =
1

det
(
E[H̃]

) det

E




f Ũzf+pŨzp

1−te
Ũzs Ũzf Ũzp

f Ũsf+pŨsp

1−te
Ũss Ũsf Ũsp

f Ũff+pŨfp

1−te
Ũfs Ũff Ũfp

f Ũpf+pŨpp

1−te
Ũps Ũpf Ũpp



 = 0,

ste =
1

det
(
E[H̃]

) det

E



Ũzz

f Ũzf+pŨzp

1−te
Ũzf Ũzp

Ũsz
f Ũsf+pŨsp

1−te
Ũsf Ũsp

Ũfz
f Ũff+pŨfp

1−te
Ũff Ũfp

Ũpz
f Ũpf+pŨpp

1−te
Ũpf Ũpp



 = 0.

Both equations equal zero, because the columns in the right-most determinants are linearly
dependent.

To find the effects on investment in market funds and private assets, substitute E[Ũtef ]

37



and E[Ũtep] from (48):

fte =
1

det
(
E[H̃]

) det

E



Ũzz Ũzs

f Ũzf+pŨzp

1−te
Ũzp

Ũsz Ũss
f Ũsf+pŨsp

1−te
Ũsp

Ũfz Ũfs
f Ũff+pŨfp

1−te
Ũfp

Ũpz Ũps
f Ũpf+pŨpp

1−te
Ũpp



 =

f

1− te
, (49)

pte =
1

det
(
E[H̃]

) det

E



Ũzz Ũzs Ũzf

f Ũzf+pŨzp

1−te

Ũsz Ũss Ũsf
f Ũsf+pŨsp

1−te

Ũfz Ũfs Ũff
f Ũff+pŨfp

1−te

Ũpz Ũps Ũpf
f Ũpf+pŨpp

1−te



 =

p

1− te
. (50)

We now use Lemma 8 to prove Lemma 1.

Proof of Lemma 1.

1. We found the comparative statics fte = f/(1 + te) and pte = p/(1 + te) in Lemma 8.
Substituting fte and pte into the uncompensated function (3) for ỹe, yields Eq. (10).

2. We found that zte = ste = 0 in Lemma 8. Substituting the comparative statics for zte ,
ste and ỹete into budget constraints (1) and (4) yields c̃2te = 0.

3. We already showed that E[Ṽte ] = 0 in (28).

Finally, we show that when the utility function is additively separable between consump-
tion in both periods and between consumption and labour supply, and individual preferences
exhibit constant absolute risk aversion, then a change in the expected return to private in-
vestment α only has income effects, on savings and on labour income.

Lemma 9. If the utility function is additively separable: U12 = U1ℓ = U2ℓ = 0, and absolute
risk aversion is constant: U22/U2 ≡ A, then a change in α only has income effects, both on
savings s and on labour income z:

∀k = s, z :
dk

dα
= (1− te)p

dk

dρ2
. (51)

Proof. Note the following partial derivatives, taking into account additive separability and
substituting (38)–(40):

E[Ũzα] = (1− te)pE[Ũzρ2 ], E[Ũsα] = (1− te)pE[Ũsρ2 ],
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E[Ũfα] = (1− te)pE[Ũfρ2 ], E[Ũpα] = (1− te)E[ũ2] + (1− te)pE[Ũsρ2 ].

Like in the proof of Lemma 8, use Cramer’s rule and Lemma 5 to find the following compar-
ative statics:

dz

dα
= (1− te)p

ds

dρ2
− (1− te)E [ũ2]

det
(
E[H̃]

) det

E


Ũzs Ũzf Ũzp

Ũss Ũsf Ũsp

Ũfs Ũff Ũfp



 , (52)

ds

dα
= (1− te)p

ds

dρ2
− (1− te)E [ũ2]

det
(
E[H̃]

) det

E


Ũzz Ũzf Ũzp

Ũsz Ũsf Ũsp

Ũfz Ũff Ũfp



 . (53)

Note the following partial derivatives, use the fact that relative risk aversion u22/u2 ≡ A is
constant and apply first-order conditions (7)–(8) for portfolio optimization:

E[Ũsf ] = (1− te)E
[
(r̃m − rb)ũ22

] E [ũ1]

E [ũ2]
= 0,

E[Ũsp] = (1− te)E
[
(α + ε̃− rb)ũ22

] E [ũ1]

E [ũ2]
= 0.

Note furthermore that taking into account additive separability, (43) and (46) imply that
also E[Ũzf ] = E[Ũzp] = 0. Substitute E[Ũzf ] = E[Ũzp] = E[Ũsf ] = E[Ũsp] = 0 into (52)–(53)
to find that the determinants in the numerators equal zero, and thus (51) is correct.

A.3 Lagrangian for the government optimization problem
The Lagrangian for the government’s optimization problem in terms of the perturbation

parameters ϵz, ϵP , tn and te is:

Λ(ϵz,ϵP , tn, te)

≡
¨

Θ

E[Ṽ(θ, ϵz, tn, te, ϵP )]dGθ(θ)− E[λ̃ · {P (r̃m) + ϵPηP (r̃m)}]

+ (1 + rb)E[λ̃]

¨
Θ

{tℓ(z(θ, ϵz, tn, te, ϵP )) + ϵzηz(z(θ, ϵz, tn, te, ϵP ))}dGθ(θ)

+

¨
Θ

{tnE[λ̃]yn(θ, ϵz, tn, te, ϵP ) + teE[λ̃ỹe(θ, ϵz, tn, te, ϵP )]}dGθ(θ), (54)

where we omit superfluous function arguments for legibility. The first-order conditions re-
quire that partial derivatives of the Lagrangian with respect to ϵz, ϵP , tn and te equal zero,
for all reform functions ηz and ηP . We derive the respective first-order conditions in the
following subsections.
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A.4 First-order condition for the tax on labour income
The first-order condition for ϵz requires that the condition ∂Λ/∂ϵz = 0 is satisfied for

every perturbation function ηz. Evaluate the condition ∂Λ/∂ϵz = 0 for the Lagrangian (54)
in the situation before any reforms, substitute envelope condition (27) for E[Ṽϵz ], substitute
decomposition (41) for ∀k = z, yn, ye : kz

ϵ , and substitute definition (16) for β(θ):

0 =

¨
Θ

(1 + rb − β(θ))ηz(z(θ))dGθ(θ)−
¨

Θ

W(θ)ηzz(z(θ))dG
θ(θ). (55)

To further interpret condition (55), we will rewrite it as an integral over labour incomes
z. Condition (55) becomes:

0 =

ˆ z

z

(
1 + rb − β(z)

)
ηz(z)dGz(z)−

ˆ z

z

W(z)ηzz(z)dG
z(z). (56)

Use partial integration to rewrite the second integral of (56):

0 =

ˆ z

z

{(
1 + rb − β(z)

)
gz(z) +

d[W(z)gz(z)]

dz

}
ηz(z)dz (57)

−W(z)gz(z)ηz(z) +W(z)gz(z)ηz(z).

The latter condition must be valid for every perturbation function ηz. Let us first focus
on the perturbation functions that are zero on the boundaries, ηz(z) = ηz(z) = 0. The
second line of (57) is then zero. Consequently, the first line of (57) must also be zero. We
will prove by contradiction that the terms between curly brackets of (57) must then sum
to zero. Suppose that these terms do not sum to zero on some interval between z and z.
Choose then a perturbation function ηz which has the same sign everywhere as the sum of the
terms between curly brackets. The integral on the first line of (57) is then strictly positive.
This contradicts the requirement that the first line is zero. It is thus impossible that the
first-order condition is satisfied for every perturbation function ηz if the expression between
curly brackets differs from zero on some interval. The latter reasoning is an application of
the fundamental theorem of the calculus of variations. Requiring that the terms between the
curly brackets sum to zero yields the Euler-Lagrange equation that characterizes the optimal
tax on labour income for any labour income z:

(1 + rb − β(z))gz(z) = −d[W(z)gz(z)]

dz
. (58)

Having established that the first line of (57) must be zero, let us now consider perturbation
functions ηz which differ from zero at one of the end points, ηz(z) ̸= 0 or ηz(z) ̸= 0. Since
the second line of (57) must be zero, it follows that the tax wedges on the end points must
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be zero. We thus find the following transversality conditions:

W(z) = W(z) = 0. (59)

Integrating (58) and using transversality conditions (59), we find the first-order condition
for the tax on labour income:

W(z)gz(z) =

ˆ z

z

(1 + rb − β(z))dGz(z). (60)

The optimal marginal labour income tax (60) resembles the standard Mirrlees result, amended
to take into account induced expected capital income tax revenue effects of a labour income
tax reform, and the uncertainty involved therein. Substitute transversality condition (59)
into first-order condition (60) to find condition the standard optimality condition for the
welfare weights in second-period values:¨

Θ

β(θ)dGθ(θ) = 1 + rb. (61)

A.5 First-order condition for the tax on risk-free capital income
The first-order condition for the tax rate on risk-free capital income requires that ∂Λ/∂tn =

0: ¨
Θ

{(
1− E[Ũ2]

E[λ̃]

)
yn + (1 + rb)tℓzztn + tnyntn + te

E[λ̃ỹetn ]

E[λ̃]

}
dGθ(θ) = 0,

where we use envelope condition (28), and we evaluate in the situation before any reforms.
Apply Slutsky decompositions (30) to find:
¨

Θ

{(
1 + rb − β(θ)

) E[Ũ2]

E[Ũ1]
yn + (1 + rb)tℓzz

∗
tn + tnyn∗tn + te

E[λ̃ỹe∗tn ]

E[λ̃]

}
dGθ(θ) = 0, (62)

where we use property (37) to substitute for second-period income effects, we substitute
Euler equation (6) and we substitute definition (16) of β(θ).18

Change the integration domain to the labour incomes and rearrange:
ˆ z

z

{
E[Ũ2]

E[Ũ1]
(1 + rb − β) yn + (1 + rb)tℓzz

∗
tn + tnyn∗tn + te

E[λ̃ỹe∗tn ]

E[λ̃]

}
dGz(z) = 0, (63)

18In the remainder of this proof we will employ the optimality of the tax schedule on labour income.
Eq. (62) remains valid if the tax schedule on labour income is not optimal. In that case, supposing the
intercept of the tax system is still optimized and transversality condition (61) remains valid, the marginal
excess burden of taxing normal capital income should be balanced against a distributional characteristic of
normal capital income:

covΘ (β, yn) =
E[Ũ1]

E[Ũ2]

¨
Θ

{
(1 + rb)tℓzz

∗
tn + tnyn∗tn + te

E[λ̃ỹe∗tn ]

E[λ̃]

}
dGθ(θ).
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where we use the constancy of E[Ũ2]/E[Ũ1] due to Euler equation (6).
Let us focus now on the first term in the integrand of (63). Write this term as a covariance

over the population Θ, conditional on labour income:
ˆ z

z

(1 + rb − β) yndGz(z) = −
ˆ z

z

{
covΘ(β, y

n|z)−
(
1 + rb − β(z)

)
yn
}
dGz(z). (64)

Use integration by parts and use transversality condition (61) to rewrite the right-hand side
of (64):
ˆ z

z

(1 + rb − β) yndGz(z) =

ˆ z

z

{´ z
z

(
1 + rb − β(ẑ)

)
dGz(ẑ)

gz(z)

dyn

dz
− covΘ(β, y

n|z)

}
dGz(z).

(65)
Substitute (65) into optimality condition (63) and substitute the optimal labour tax condition
(60):19

ˆ z

z

covΘ(β, y
n|z)dGz(z) =

ˆ z

z

W(z)

(
dyn

dz
− ∂ync

∂z

)
dGz(z)−

ˆ z

z

covΘ (W , yncz |z) dGz(z)

+
E[Ũ1]

E[Ũ2]

ˆ z

z

Wyncz
E[Ũ2]

E[Ũ1]
+ (1 + rb)tℓzz

∗
tn + tnyn∗tn + te

E
[
λ̃ỹe∗tn

]
E[λ̃]

 dGz(z).

Substitute the definition of the labour wedge (17):
ˆ z

z

covΘ(β, y
n|z)dGz(z) =

ˆ z

z

W(z)

(
dyn

dz
− ∂ync

∂z

)
dGz(z)−

ˆ z

z

covΘ (W , yncz |z) dGz(z)

+

ˆ z

z

(
(1 + rb)tℓz

(
z∗tn

E[Ũ1]

E[Ũ2]
− z∗σy

nc
z

))
dGz(z)

+ tn
ˆ z

z

(
yn∗tn

E[Ũ1]

E[Ũ2]
− yn∗σ yncz

)
dGz(z)

+ te
E

[
λ̃
´ z
z

(
ỹe∗tn

E[Ũ1]

E[Ũ2]
− ỹe∗σ yncz

)
dGz(z)

]
E[λ̃]

. (66)

We rewrite some of the terms on the right-hand side of (66). First, use Slutsky symmetry
(31) to rewrite:

z∗tn
E[Ũ1]

E[Ũ2]
− z∗σy

nc
z = y∗σ − z∗σy

nc
z = 0, (67)

where the last step follows from the fact that, keeping constant labour income z, a compen-
sated perturbation of the tax on labour income does not directly affect the savings choices.

19Add and subtract
´ z
z
W(z)yncz dGz(z) to find the result.
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Second, use Slutsky symmetry (31) to rewrite:

yn∗tn
E[Ũ1]

E[Ũ2]
− yn∗σ yncz =

E[Ũ1]

E[Ũ2]
(yn∗tn − z∗tny

nc
z ) =

E[Ũ1]

E[Ũ2]
ync∗tn (68)

Third, note that yn∗σ = yncz z∗σ and ỹe∗σ = ỹecz z∗σ, and thus ỹe∗σ yncz = yn∗σ ỹecz . Use this equality to
rewrite:

ỹe∗tn
E[Ũ1]

E[Ũ2]
− ỹe∗σ yncz = ỹe∗tn

E[Ũ1]

E[Ũ2]
− yn∗σ ỹecz =

E[Ũ1]

E[Ũ2]
(ỹe∗tn − z∗tn ỹ

ec
z ) =

E[Ũ1]

E[Ũ2]
ỹec∗tn , (69)

where we apply Slutsky symmetry (31) in the second step. Substitute (67)–(69) into (66) to
find the optimality condition:
ˆ z

z

covΘ(β, y
n|z)dGz(z) =

ˆ z

z

W(z)

(
dyn

dz
− ∂ync

∂z

)
dGz(z)−

ˆ z

z

covΘ (W , yncz |z) dGz(z)

+ tn
ˆ z

z

ync∗tn dGz(z)
E[Ũ1]

E[Ũ2]
+ te

E
[
λ̃
´ z
z
ỹec∗tn dGz(z)

]
E[λ̃]

E[Ũ1]

E[Ũ2]
.

A.6 First-order condition for the tax on excess capital income
The first-order condition for the tax on excess capital income requires ∂Λ/∂te = 0 in the

situation before any reforms. This immediately yields condition (18).

A.7 First-order condition for the ex-post provision of the public

good
The government’s first-order condition for the ex-post provision of the public good,

∂Λ/∂ϵP = 0, requires that the following condition is satisfied:

E

[(¨
Θ

ŨPdG
θ(θ)− λ̃

)
η̃P
]
= 0, (70)

where we use envelope property (29) and the fact that the level of public good provision does
not affect individual behaviour. The latter expression must be true for every perturbation
function η̃P . Applying similar reasoning as we did for the first-order condition for the labour
income tax, using the fundamental theorem of the calculus of variation, we find government’s
first-order condition for the optimal provision of the public good:

λrm =

¨
Θ

EE [ŨP |rm]dGθ(θ). (71)

Take the expected value of (71), divide by E[λ̃] and rearrange to find:

1 =

¨
Θ

(1 + rb)
E[ŨP ]

E[Ũ1]
dGθ(θ) +

¨
Θ

(
E[Ũ1]

E[λ̃]
− (1 + rb)

)
E[ŨP ]

E[Ũ1]
dGθ(θ). (72)
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The term E[ŨP ]/E[Ũ1] reflects an individual’s expected marginal valuation of the public good
in terms of first-period consumption. The first term on the right-hand side of (72) reflects the
effect on social welfare of a marginal increase in public good provision when all individuals
have equal social weights, so E[Ũ1]/E[λ̃] = 1 + rb for each individual. This term reflects
the traditional Samuelson rule (1954) for public good provision, where the marginal utility
of private consumption should be equalized to the marginal utility of the public good. The
second term on the right-hand side reflects the distributional effects of a marginal increase in
public good provision, due to the fact that different individuals have different social weights.
If the expected marginal valuation of the public good E[ŨP ]/E[Ũ1] increases sufficiently with
the social weight E[Ũ1]/E[λ̃], then the second term on right-hand side of (72) is positive.
This implies that the first term on the right-hand side of (72) must be smaller than one, and
thus that the provision of the public good must be larger than if distributional motives were
ignored.

A.8 Proof of Corollary 2
Proof. Our reasoning in Subsection 3.2.1 clarifies why the optimal tax on excess returns
must be in the range 0 < te < 1. To see how the optimal te responds to the importance
of aggregate risk or the degree of risk aversion towards the public good, note that (10) is
a differential equation defining excess returns as a function of the tax rate. Its solution is
ỹe(te) = ỹe(0)/(1− te). Substitute this solution and (10) into (20):

¨
Θ

E [ỹe(0)] dGθ(θ) = −
¨

Θ

cov
(˜

Θ
EE [ŨP |r̃m]dGθ(θ), ỹe(0)

)
E[λ̃]

dGθ(θ).

The left side is positive and independent of te, while the right side ranges from zero to
infinity as te varies from 0 to 1 and individuals increase their risky investments. The value of
te where both sides are equal decreases with more aggregate risk or increased risk aversion
towards the public good.

A.9 Proof of Corollary 3
Proof. Rearrange the integrals in (20) and substitute (19):

¨
Θ

E [ỹete ] dG
θ(θ) +

cov
(˜

Θ
EE [ŨP |r̃m]dGθ(θ),

˜
Θ
ỹetedG

θ(θ)
)

˜
Θ
E[ŨP ]dGθ(θ)

= 0.
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Given our assumption that the returns to the risky assets are jointly normally distributed,
we can apply a result by Rubinstein (1976):20

¨
Θ

E [ỹete ] dG
θ(θ) +

˜
Θ
E[ŨPP ]dG

θ(θ)˜
Θ
E[ŨP ]dGθ(θ)

cov

(
P̃ ,

¨
Θ

ỹetedG
θ(θ)

)
= 0.

Substitute the individual budget constraint (4) and the government’s budget constraint (14),
and use (10):

¨
Θ

E [ỹete ] dG
θ(θ) +

te

1− te

˜
Θ
E[ŨPP ]dG

θ(θ)˜
Θ
E[ŨP ]dGθ(θ)

var

(¨
Θ

ỹedGθ(θ)

)
= 0.

Finally, use our assumption of constant global absolute risk aversion with respect to the
provision of the public good and rearrange to find (21).

A.10 Proof of Lemma 3
Proof of Lemma 3. Use (3) and the fact that the private shocks are i.i.d. to find cov(λ̃, ỹeν) =

cov(λ̃, r̃m)fν . Multiply and divide the right-hand side by
˜

Θ
fdGθ(θ) to find:

cov(λ̃, ỹeν)

E[λ̃]
=

fν˜
Θ
fdGθ(θ)

¨
Θ

cov(λ̃, ỹe)

E[λ̃]
dGθ(θ).

Substitute the government’s optimality condition (18) and use (10):

cov(λ̃, ỹeν)

E[λ̃]
= − fν˜

Θ
fdGθ(θ)

¨
Θ

E[ỹe]dGθ(θ).

We thus find:

te
¨

Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) = te
¨

Θ

(
E [ỹeν ]−

fν˜
Θ
fdGθ(θ)

¨
Θ

E[ỹe]dGθ(θ)

)
dGθ(θ)

Substitute (3) for ỹe on the right-hand side:

te
¨

Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) = te
(¨

Θ

pν(α− rb)dGθ(θ)−
˜

Θ
p(α− rb)dGθ(θ)˜

Θ
fdGθ(θ)

¨
Θ

fνdG
θ(θ)

)
.

These derivations extend to compensated effects and effects conditional on labour income.
Verify that the latter corresponds to Lemma 3.

Appendix B The Mean-Variance framework
We apply the Mean-Variance approach, introduced by Markowitz (1952), to our model.

Suppose the returns of both risky assets are jointly normally distributed, so any linear
20Rubinstein (1976, , p.421) finds that for any variables x̃ and ỹ that are bivariate normal, and any function

g(ỹ) that is at least once differentiable, we have the property cov(x̃, g(ỹ)) = E[g′(ỹ)]cov(x̃, ỹ).
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combination of them has a univariate normal distribution. The second-period individual
budget constraint (4) then implies that second-period consumption is normally distributed.
Government budget constraint (14) shows that second-period consumption remains normally
distributed. This allows us to study the individual portfolio optimization problem in the
Mean-Variance framework.

Taking labour income z and the size of the portfolio s as given and using the separability
properties of individual preferences, the portfolio optimization problem consists of choosing
the amounts invested in assets f and p to maximize the expected utility from consumption
in the second period:

max
p,f

E[u(c1, c̃2)|c1], (73)

where c̃2 is given by (4). The amount b invested in bonds follows as a residual from (2).
Assume that second-period consumption is normally distributed, with expected value

E[c̃2] and standard deviation sd[c̃2]. Then the following stochastic quantity follows the stan-
dardized normal distribution:

ñ ≡ c̃2 − E[c̃2]

sd[c̃2]
.

Denote the probability density function of ñ as φ (ñ). The objective function (73) can then
be rewritten in terms of the mean and the standard deviation of second-period consumption:

E[u(c1, c̃2)|c1] =
ˆ +∞

−∞
u(c1,E[c̃2] + n · sd[c̃2])φ(n)dn. (74)

Solving this portfolio optimization problem leads to the following Lemma.

Lemma 10. In the Mean-Variance framework, the ratio of investments in the risky assets
is determined by:

p

f
=

α− rb

E [r̃m]− rb
var (r̃m)

var (ε̃)
. (75)

The relative proportion p/f invested in the risky assets is increasing in private investment
productivity α, and is unaffected by skill, taxes, or the size of the portfolio.

We find the standard result that the relative proportions invested in the risky assets are
determined only by the mean and the variance of the excess returns of these assets. Individ-
uals with higher expected returns on private investment undertake more private investment.

Denote the semi-elasticity of the investment γ = f, p with respect to some perturba-
tion parameter ν as ξγν ≡ ∂ log γ/∂ν. Taking logarithms on both sides of (75) and taking
derivatives with respect to the perturbation parameter, results in the following lemma.

Lemma 11. In the Mean-Variance framework, the semi-elasticities of investment in the
market asset are related to the corresponding semi-elasticities of investment in the private
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asset as follows:
∀ν = σ, tn, ρ : ξfν = ξpν .

This result extends to the corresponding compensated semi-elasticities, and to semi-elasticities
conditional on labour income.

If individuals behave as predicted by the Mean-Variance framework, then the amounts
invested in private and market assets move proportionally and in the same direction. This
is in line with Lemma 10.

Let us now verify the consequences of Lemma 11 for our model. First assume that ξpν

and ξfν are constant over the income distribution. Lemma 3 then implies:

¨
Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) =

¨
Θ

(α− rb)pdGθ(θ) · (ξpν − ξfν ).

Lemma 11 then implies:

¨
Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) = 0.

It follows that when the elasticities ξpν and ξfν are constant over the income distribution
and the mean-variance framework applies, the welfare effects of changes in tax revenue from
excess capital income due to a perturbation are exactly cancelled out by the welfare effects
of the uncertainty of those changes in tax revenue.

Assume instead that α is constant, so all individuals obtain the same expected rate of
return to their private investments. Lemma 3 then implies:

¨
Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) =

¨
Θ

(α− rb)pdGθ(θ) ·
(˜

Θ
pξpνdG

θ(θ)˜
Θ
pdGθ(θ)

−
˜

Θ
fξfνdG

θ(θ)˜
Θ
fdGθ(θ)

)
.

(76)

Then Lemma 10 shows that p/f is equal for all individuals and that ξpν = ξfν for all individuals.
It follows again that: ¨

Θ

E [ỹeν ] +
cov

(
λ̃, ỹeν

)
E[λ̃]

 dGθ(θ) = 0.

It follows that also when all individuals have the same expected return α from private
investment and the mean-variance framework applies, the welfare effects of changes in tax
revenue from excess capital income due to a perturbation are exactly cancelled out by the
welfare effects of the uncertainty of those changes in tax revenue.
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